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APPLICATION OF THE METHOD OF TWO-SCALE EXPANSIONS TO THE 
SINGLE-FREQUENCY PROBLEM OF THE THEORY OF NON-LINEAR OSCILLATIONS * 

V.D. AZHOTKIN and V.M. BABICH 

The method of two-scale expansions is applied to a single-frequency system. 
The expansions obtained are justified over an asymptotically large time 
interval using the method of successive approximations. 

1. Many authors have used the method of two-scale expansions and similar methods /l-S/ 
to construct solutions of the following system as E-+0: 

d’T:dl = 0 (1) + Ef (‘T, 1, E), 0 (1) > 0 (1.1) 
dZ:dt = Eg (v, 1. E); o, f, g E C", 0 < E(( 1 

Below we propose a two-scale expansion, different from existing ones, of the solutions 
of system (1.1) 

[F = 11 + E(F, (tl, 1) T E*‘Fz (II. T) t . . . (13 
I = I, (T) -i- El, (tl. T) _t E21, (il, T) -7 . . 

(tl=* $ To(l). ,=,t) 

where t, is the fast time, 'I is the slow time, Tj(i>- 1). fjU>O) are the required functions, 

2n periodic in time II when j > 1. The proposed procedure is direct and does not 

require successive changes of variables, which simplifies the derivation of the asymptotic 
forms of the solution of system (1.1). Eqs(l.1)) and also the equations for deriving 1, 

(see below), are non-linear and their existence can only be guaranteed on a segment of the 
form O<Z-<~O<-~,i.e., for O<t<T,E. On such segments, when E is fairly small, it 
is possible to prove the existence of a true solution of the Cauchy problem for system (l.l), 
and expansions (1.21, in fact, provide the asymptotic forms of these solutions. Hence, where- 

ever one succeeds in constructing series !1.2), a true solution of system (1.1) exists, and 
the asymptotic form of that soiution is given by (1.2). 

2. Let us construct series that asy?3ptotically satisf y system (1.1) with initial 
conditions 

q &=a. I ~I=0= b (2.1) 

We substitute (1.2) into (1.1: and equate terms cf higher order on both sides of these 

equations 

(F-l'(T) = w (lo). I,'Q - I,' = g (t,. I,. 0) (2.2) 

where the prime indicates a derivative with respect to T, and a dot a derivative with 

respect to 1,. Averaging the second of Eq.(2.2) over the period 2x, we obtain 

lo'(~)=<g(tl, I~,o); (<F)=$‘(t~jdh) (2.3j 

cl 

Eq.(2.3) is the equation of the method of averaging /1,6/. From (2.31, the first cf 

Eqs.(2.2), and initial conditions (2.1) we obtain 

'F-, (0) = 0, T_)' (T) = o (lo): 1, (0) = b. 10' (T) = <g (t,. I,> 0)) (2.4) 

from which in some segment O.< T < To< + 03 p1 and Io are uniquely defined. 
Let us write dowE the terms of the following approximation: 

‘Cu’(T)--(Fl’(ill=W(lo)z~I!(tl.lo,O): d’(I,)= T (2,s) 

I?‘(ill $ z,‘=e’(tI>I,.O)ul - 81, 

^_ 
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From (2.2) we obtain I,, apart from the term that depends only on r 

I1 = 110 (h, 7) f Zl’ (7) (2.6) 

We select the first term I,” so that <ZIO) = 0. Eqs.(2.5) may be considered as equations 
for determining Q and I, in the class of functions that are 251 periodic in tr . The 

condition for such q1 and I, to exist is the equality of the left and right sides of (2.5) 

averaged over the period (in this case (ml'> = 0, (I*') = 0 1 

T,o’(T)-@‘(zo)z~~(T) + (f>, I1’W= <g’w>+ <&I>+ <g) (2.7) 

We eliminate the function 'pl from the first term on the right side of the second of 
Eqs.(2.7) and obtain 

<g'm,l)=- @cl') = - < 
g Ul.'OB 0) @'(ZO) I11 + 
0 (lo) (2.8) 

o'(z~)zl~~!(tl,zo,O)-~~'(~))>=[(g) (f>-~(d>-~‘(~o)(g~lO)ll~(~o) 

In the transformations we used Eqs.(2.5) and (2.7). It follows from (2.6) and (2.8) 
that the second of Eqs.(2.7) is a first-order linear equation in 1,' CT). Its solution yields 

I,' (T) and 'PO (7). From (2.1) and (2.6) we obtain 

'Fo (0) = a, I,1 (0) = --I,0 (a, 0) (2.9) 

The initial conditions (2.9) and Eqs.(2.7) and (2.8) define go and I,‘. 

3. s uppose Tel. qO. . . . . CFj-1, 1,. 1,. . ., I, have been found and the equation dq’dt = o (I) i 

Ef (respectively dI,dt = eg see (1.2)) has been satisfied with an accuracy to terms of order 
ej-1. The initial data of the Cauchy problem (2.1) are satisfied for m,Z with an accuracy 
to terms of order ej-1. We shall now deal with terms of the following approximation: 

'Fj'o (IO) = Aj (tlv 5). Ij+l'O (10) = g*Cr, t Bj (tl> T) (3.1) 

where Ai and Bj are 271 periodic functions of t, , dependent on qi-1, Ii, i G j. For the 

periodic solution qj, Zj+l of system (3.1) to exist it is necessary and sufficient that the 
equations 

(Aj) = 0. <-g-4 j o (IO) T Bj) = 0 (3.2) 

are satisfied. 
We separate in the functions v,, Ij_1 the "fast" and "slow" parts 

Tj = 'F,' (f,t T) + $1' (T): <Vj') = 0 (3.3) 

Ij+l= If+,(tl* 1) + 1:+1(T); (If~l) = Cl 

which depend only on T. 

We integrate (3.1) with respect to t,, and taking intc account (3.3) obtain 

(3.4) 

The functions qj'(T) and I~.1'(?)will be defined using equations of subsequent approximation 
and initial data. Let us write these equations 

'F;-I'L'(Io) - 'I,' i ~,‘~U)=W~JO)I,-~ ~ !“c,’ - Ej.1 (3.5) 

r;,,w (I”) 2 Ij’yo’ - I>’ = g’c;,,, - $ I,_, -L 

i g”(Fl’l- -- z$. I,q,, - l’j_l; ‘> , )i, =+; kj== 1 (]>I) 

where Ej+l, F,,l are known functions of 1,. T! 
WC obtain the required equations 

periodic in t,. Averaging Eqs.(3.5) overt,, 

where Cj-1 is a known function. The coefficient of v,l is transformed to 
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We shall now require the initial data to be satisfied for 
terms of order sj (@I) 

p(l) with an accuracy to 

Formulae (3.7) determine the initial data for system (3.6). The quantities qjX and I,,,' 
are uniquely defined by (3.6). Eqs.(3.5) now take the form (3.1) with j replaced by j + 1. 
and conditions (3.2) (with j replaced by I-+ 1) also hold. The process of constructing 1,,r. 
Pj can be continued. 

Note that the slow variable X is determined at each step with an accuracy one order of E 

greater than the fast variable, T. This situation Is characteristic when using the method 
of perturbations in the theory of oscillations. 

4. Now, since the two-scale expansions of the Cauchy problem (1.11, (2.1) have been 
constructed, the question of their substantiation arises. It consists of proving the solvability 
of problem (l.l), (2.1) in an asymptotically large time interval, and evaluating the remainder 
terms. To obtain these results the classical method of successive approximations isconvenient 
(see /7/). In particular, in /7/, the method of averaging for Eq.fl.1) is proved (differently 
from here). Other methods and their proof can be found in /1,6/. 

We shall now restate the results obtained. Let us assume that f, g are 2s periodic 
functions of q ani? 

f, g, 0 E Cm (-m < (I < - 00, II - t ’ < a* 0 < E < p, 

11 trO = b, 0 < a = cons, 0 < 0 - const) 

Let problem (2.31, (2.4; be solvable for I,(r) when O,<r,<r,<-+c~, and ir,(~)---b< 
a, 0 \< 7 c To. When O,< z <; 7O ali terms of series (1.2) can be constructed under these 
conditions. 

Theorem. There exists an eO. O<:E~< @. such that when 0 <i (TV'&, problem (l.l), 12.1) 
is solvable, provided !I(f)- 6 j < a. 

Series (i.2' obtained above give the asym;totic for3 of the solution of the Cauchy problem 
in the following sezsf. Let (i and I be the solution of the Cauchy problem ;1.1), (2.1). WE 
introduce the terms R, and RI using the eq;lations 

q=i,-- $,A. - R,. I = E FjJ> - II, (4.1) 
>=0 

The fcll.owing Aneqnaiities 

j R, j < cons1 E'-'; / RI / .< const P1. 0 < F < F~ (4'7) 

are satisfied for O< r,< TIE. 
It turns out that the investigatroc is simplified if instea of R, and RI the remainder 

terms S, ano Sr are introduced so that 

derive for SJ and S, a system of integral equations, and prove in the interval O< t,<?@.~ 
the comparative?y weak estimate 

/ s, / --(. const F’-I, j s, / zg cunst Et*' (4.4) 

By virtue of the cbviczs equations 

the estimates 
there follows 

_b E-&,-I - F' ‘qri2 -_ S q = R,. E’-I,+~ L.. ~‘“2J7,~ -I- S2 = RJ (4.5, 

(4.4) are sufficient for obtaining the estimates (4.21. Frcm (1.1) and 14.3) 
the equation fcr S, and Sr 

tiT_-$&-... d5, _ -F’-~cJ~.2)-;O(I*“. .,.- %?I)- (W 
e,f (fl -_ . - s,, I, - . . -L s,, E) 

dSr 
-z-== -&l,-.,. - P--(F,_$ - e&’ (fi I , . -+- s,, f, + . +Sr. E) 
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The initial data for S, and 5'1 are zero 

4 Ii-0 = 0, s, (Iti = 0 

since the sums 

(4.7 

satisfy the initial data (2.1). 
the terms @r, Y, linear relative 
series in powers of S, and SI), 
estimate for small S, and SI. 
we replace (4.7) by the integral 

On the right sides of (4.6) we separate the free terms oo, Yo. 
to S, and S1 (in expansion of the right sides in Maclaurin 
and the remainder terms (o,, Yy, which have a quadratic 
Taking into account the initial data (4.6) for S, and SJ, 

equations 

s, =J (Do + UJ, + 0,)dr', Sr = J(Yo + Y, $ Y*)df’ (4.8) 

Here and henceforth integration with respect to t' is carried out from t' = 0 to i' = t. 

On the assumption that 

(the 
have 

O,<t<To:E, IS,I<Ao. lSII<A,, O<E<B,<B (4.9) 

numbers A, and fll must be so small that the inequality 11 -b \<a is not violated), we 

I 00 I < AIE”+~, I a, 1 < Al (S? + Su? (4.10) 

I Y’, ’ < A,P, / Y’: ) < A1~ (S,? - S,*), A, = const > 0 

@ ,=o'S,+E~S.IE+s,, Y',_E +++sl) 
( 

The arguments of the functions o', fo’, fl’, go’, gl’ are 

t1-+ . . . -!- Erizqr,*, 10 + . . . + FT+*1ri2, E 

We apply the method of successive approximations not to system (4.8), but to some 
identical transformation of it. The terms JQ,di' and ,F Y,di’ are insufficiently "weak" for a 
simple substantiation of the method of successive approximations. Let us try to find a 
transformation of (4.8) which would eliminate the linear terms from it. We begin the 
transformation from the second equation of (4.8). The principal term (in the group of linear 
terms) which contains S, is 

We integrate this integral by parts, eliminating the function g from the derivative with 
respect to t’ . We change in the terms linear in S, on the right side of the second Eq.(4.9), 
the function S, by its expression from the first of Eqs.!4.8). 

We convert the new equation which has Sr as its left side, as follows: assuming on the 
right side that all terms, apart from the linear uniform ones containing SI are known, we 
solve this equation for Sr. We arrive at an equation for SJ not containing on the right 
side linear Volterra operators in SI. We substitute the expression obtained for SI in the 
appropriate place into the terms linear in SI of the first of Eqs.(4.8). Now the linear 
terms of this equation will not contain SI. We arrive at a System Gf equations for S, and 
S I, the linear uniform terms of which (in the right sides of the equations) are Volterra 
operators that have the form 

KF=~\K(t,t’,+‘(t’)dt’, O,<t’-<t<+ 
. 

whose kernels K(t, l', a) are bounded. 
Using successive approximations to solve this system, assuming all terms on the right, 

apart from those linear and uniform in SF and SI, are known, we obtain a system of integral 
equations of the form 

(4.11) 

where 0, and Y, are independent of S, and S1, and when inequalities (4.9) are satsified, 
the following estimates hold: 

1 0, 1 < A~E++~. I ‘4, I < A&+* (4.12) 
1 OS I < -42 (S12 - ES,*), I Y, I < .42E (Sr* L- S,2) 
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When carrying out the transformationsitis necessary to bear in mind that thecomposition 
of integral operators of the form 

with uniformly bounded kernels li) gives the integral operator K1K2, whose kernel is uniformly 
bounded when 0 < i' 1 t < T~:E. 

5. We will solve the system of integra I Eqs.(4,12) by the usual method of successive 
approximations, setting 

It can be shown that when I? < E $&,,where sg is a fairly small number, the successive 

approximations will. not go beyond the limits of the square 

where A, is an arbitrary but fixed number. 

To prove estimate (5.21, we use the inequalities 

j s;y , L”_ A, y (P”‘3 - (Sly - E (S,“)) df 
j \‘;.-I ’ ,, -1, \ (E-3 - E (S,“)Z - E (s,y*) df’ 

(5.3) 

which hold when ineqiialities (4.9) are satisfied and follow from estimates (4.12). 
The next step for obtaining estimates (5.2 i is based on the following consideration (a 

similar method was used previously /8/). Let L and .Kbe non-negative solutions of the system 
of integral equations 

L = .12 j (t"3 - j!' -- FL') df'. .li = ,-12 j (C"+ - E.\f* - Et’) dt’ (5.4) 

If for some n we have i S,” i Q L., j SI” I .< .lf, then, as follows from (5.3) and (5.4), we 
have for all n'> ?z the inequalities 1 San’ 1 <L, (81”’ j<~\f. Hence it is sufficient to 
prove the existence of the solution L, M of system (5.4) such that 

0 :G L :: .d 3Ff+1. ii 4 :\f G A,eril (5.3) 

Let us prove t??at such L il.-d k fx:St. we make in (5.4) the substitution L = e"il, .V = c'*~R? 
The square (5.2) becomes 1 E j <.aJ. in? ,<.48. 

The eqliaticns for I and n are obvic,sly of the form 

1 = A, ($1 -- E’-’ J’ (f!c’ - El’) di’) 

I?< = AC (E’l - E--’ j (I$ - I’) d:‘) 

This system of integral equation is equivalent ot the system of differential equations 
with zero initial conditions 

2&=.L(F 7 t:'(m' -- Fi:)). ~=.~:i,-.,,-iim?TI?)/ (S.6) 

7: = Et: 1 (U! = I,> (ii) = 0 

We will consider these eq.uations for U .< r <to and j i / .< A,, lm l,<A,, assuming that 
r>U. The last requirement does not limit the generality. The existence of a non-negative 
solution of this system follows from Picard's theorem, when 12 1 <.AA,. jrn! <:A3 with zero 
initial conditions when 0 .; T ., tiiri {T(,~ A, .y}, where R is the maximumofthe modulus of the 
right side when (1 /.-A / n)E j .y .A 3. Since 0 < ,y < const + E, 

e< e,,) the quantity z,.? does not exceed ~~ 
then for fairly small Eg (0 < 

and a solution exists when 0 <T<T~. 
The existence of non-negative 1 and m in the square j I! < .A:, 1 nz j c< A, (and consequently 

L = a“=l, X = t'-ln, in the square (5.5)) is thus proved. At the same time the inequalities 

1 S,” i < L < A #-1, j S1” / < Jf .:< A &-I (5,:) 

are proved for any n, since they obviously are satisfied when ,* = -1. 
The proof of the uniform convergence of the successive approximations sqn and Sin tcz 

limits as n+ cr,after the proof of inequality (5.71 is not difficult, and is carried opt as 
in Picard's thecrez. 
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Passing to the limit in (5.7) as n-tot, we obtain the estimates (4.4) with const = A,, 
which completes the proof of the method of two-scale expansions. 

The extension of the results of this paper to the case when I=(I1,Is,...,I'), s> 1, is 
trivial. For the multifrequency case m = (cp*, (p*,...,@), s> 1 there is no such simple 
and complete theory as inthe case of s - 1. 

The authors thank A.M.Il'in for pointing out the method of eliminating the remainder terms 
when proving the theorem. 
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ON THE CONDITIONS FOR THE EXISTENCE OF THE REDUC ING CHAPLYGIN FACTOR* 

IS. ILIYEV 

The problem of the existence of a reducing Chaplygin factor (RCF) for 
non-holonomic systems with ii degrees of freedom is discussed. By 
introducing additional coordinates, a class of non-holonomic systems for 
which the RCF method is applicable in a widened configuration space is 
distinguished. For comparison, the corresponding conditions in quasi- 
coordinates are given. The existence of an RCF for one of the equivalent 
non-holonomic systems is studied. 

1. Formulation of the problem. S.A. Chaplygin formulated the conditions under 
which non-holonomic systems with two degrees of fredom can have a reducing factor (see /l/j. 
Using the equations in admissible vectors, Chaplygin's ideas were extended to systems which 
have k degrees of freedom, /i/. The present paper continues the investigations initiated 
in /2/. 

Let us recall from /2/ some cf the equations necessary for our discussion. We assume 
for brevity that the indices h, p. r.%, p. . . . take values from 1 to n; a, b. c.d from 1 to k; 
and p. q. r, . . . from k to n. 

By means of 

dT = .I' (9’) df, 

the equations of motion of a non-hclononic system in admissible vectors, 

is changedtothe form 

(1.1) 

(1.2) 

(1.3) 

l Prikl.&tem.Meki;an.,49,3,384-391,19@5 


